This MCP server provides access to OpenAI's websearch functionality through the Model Context Protocol. It allows AI assistants to search the web during conversations with users, providing up-to-date information that may not be available in the assistant's training data. The server can be installed and configured for use with Claude.app or Zed editor.
One click installation & Configuration
Claude
!!Can using this command auto update configure file(Recommend)
OPENAI_API_KEY=sk-xxxx uv run --with uv --with openai-websearch-mcp openai-websearch-mcp-install
sk-xxxx is your API key. You can get it from openai's open platform
Cursor
Conming soon
Windsurf
Conming soon
Available Tools
web_search
- Call openai websearch as tool.- Required arguments:
type
(string): web_search_previewsearch_context_size
(string): High level guidance for the amount of context window space to use for the search. One of low, medium, or high. medium is the default.user_location
(object or null)type
(string): The type of location > approximation. Always approximate.city
(string): Free text input for the city of the user, e.g. San Francisco.country
(string): The two-letter ISO country code of the user, e.g. US.region
(string): Free text input for the region of the user, e.g. California.timezone
(string): The IANA timezone of the user, e.g. America/Los_Angeles.
- Required arguments:
Manual installation and configuration
Please make sure uvx
is installed before installation
Add to your Claude settings:
1、Using uvx
"mcpServers": {
"openai-websearch-mcp": {
"command": "uvx",
"args": ["openai-websearch-mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
}
2、Using pip installation
1)install openai-websearch-mcp
via pip:
pip install openai-websearch-mcp
2)modify your Claude settings
"mcpServers": {
"openai-websearch-mcp": {
"command": "python",
"args": ["-m", "openai_websearch_mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
}
Configure for Zed
Add to your Zed settings.json:
Using uvx
"context_servers": [
"openai-websearch-mcp": {
"command": "uvx",
"args": ["openai-websearch-mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
],
Using pip installation
"context_servers": {
"openai-websearch-mcp": {
"command": "python",
"args": ["-m", "openai_websearch_mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
},
Debugging
You can use the MCP inspector to debug the server. For uvx installations:
npx @modelcontextprotocol/inspector uvx openai-websearch-mcp